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Abstract

The paper addresses a class of boundary value problems in some self-similar ramified domains, with the Laplace or
Helmholtz equations. Much stress is placed on transparent boundary conditions which allow the solutions to be computed
in subdomains. A self similar finite element method is proposed and tested. It can be used for numerically computing the
spectrum of the Laplace operator with Neumann boundary conditions, as well as the eigenmodes. The eigenmodes are nor-
malized by means of a perturbation method and the spectral decomposition of a compactly supported function is carried
out. Finally, a numerical method for the wave equation is addressed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with numerical methods for some boundary value problems in a self-similar ram-
ified domain of R2 with a fractal boundary. This work was originally inspired by a wider and challenging pro-
ject aimed at simulating the diffusion of medical sprays in lungs, see [10,23,24] for accurate physical
descriptions of the lungs’ physiology and for studies concerning the diffusion of oxygen in lungs. Our goals
are much more modest, since the geometry is quite simpler (only two dimensions) and since we restrict our-
selves to the Laplace and Helmholtz equations. Yet, we hope that rigorous results and methods will prove use-
ful. Other applications can be found, for example in chemical engineering, see [8].

The geometry under consideration is displayed in Fig. 1. The domain X0 is constructed in an infinite num-
ber of steps, starting from a simple polygonal T-shaped domain of R2, called Y0 below; we call Yn the domain
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Fig. 1. Left: the first step of the construction: two dilated/translated copies of Y0 are glued to Y0. Right: the infinitely ramified domain X0

(only a few generations are displayed).
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obtained at step n: Yn+1 is obtained by attaching Yn to 2n+1 dilated/translated copies of Y0, with the dilation
factor of 1/2n+1. So we have Y0 � Y1 � � � � � X0. We say that X0 is self similar, because X0 n Y n is made out of
2n+1 dilated copies of X0 with the dilation factor of 1/2n+1. The boundary of X0 is made up of three parts; two
straight lines, the bottom (resp. top) boundary C0 (resp. C1) of X0, and the lateral part of the boundary R0.

The present work is devoted to Poisson problems in X0 with the Laplace or Helmholtz equations, Dirichlet
conditions on C0 and homogeneous Neumann conditions on the remaining part of the boundary. For exam-
ple, the Helmholtz equation is used in a simplified model for time harmonic acoustic waves: we use the restric-
tive term simplified to keep in mind that this equation may be inappropriate when the length scales in the
geometry become much smaller than the wavelength, since viscothermal layer effects become preponderant.
The Laplace equation arises in e.g. electrostatics for computing the electrical potential, or in the simplest fluid
models (potential flow). The content of this paper can be applied to more involved fluid models, e.g. Stokes
equations, but we decided to focus on simple equations to stress the general ideas. Similarly, what follows
applies to the equation div(vgradw) = 0, where v is a symmetric positive definite constant tensor.

Partial differential equations in domain with fractal boundaries or fractal interfaces is a relatively new topic:
variational techniques have been developed, involving new results on functional analysis, see [5,27,19,20]. A
nice theory on variational problems in fractal media is given in [26].

The present work is the continuation of the more theoretical paper [1]: here we focus on numerical methods
and possible applications. For the methods to be understood, we restate several results contained in [1], and
some of the proofs when we think that they are necessary for a good understanding. All the missing proofs can
be found in [1]. Note that in the last article and in [2], we also addressed nonhomogeneous Neumann condi-
tions on C1, which appear relevant for modelling the lungs.

Much stress will be placed on a method for computing the restriction of the solution to the subdomains Yn,
with n fixed. This is important, because, in numerical simulations, it is not possible to completely represent the
domain X0, for this would imply an infinite memory and computing time. We shall show that it is possible to
compute the solution in Yn by successively solving 1 + 2 + � � � + 2n boundary value problems in the elementary
domain Y0, with what we call transparent boundary conditions on the top part of the boundary of Y0, see Algo-
rithms 1 and 3. Such boundary conditions involve nonlocal operators, which may be called Dirichlet–Neu-
mann operators. These operators will be computed, more precisely approximated up to an arbitrary
accuracy, by taking advantage of the self-similarity in the geometry. For Laplace’s equation, the Dirichlet–
Neumann operator is approximated as the limit of an inductive sequence, see Theorem 3. For the Helmholtz
equation, the Dirichlet–Neumann operators (depending on the pulsation of the related harmonic wave), can
be approximated by performing iterations of a renormalization operator, see Section 5.3.

The method is reminiscent of some of the techniques involved in the theoretical analysis of finitely ramified
fractals, see [29,32,31], also [18,4,35] for review texts on analysis and probability on finitely ramified fractals
and [28,11] for numerical simulations (note that in the present work, what is fractal is oX0, not X0).

We shall carry out the whole program at the discrete level with finite elements and self-similar triangula-
tions. The result is a method for computing the restriction of the solution to Yn, n fixed: in the proposed
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discrete method, there are two sources of errors, the error due to the discretization and the error due to the
approximation of the discrete transparent boundary condition; this last error can be made as small as desired
(assuming infinite arithmetic precision), whereas the first error decays when the triangulation is refined.

The above mentioned Dirichlet–Neumann operators can be used for numerically computing the spectrum
and the eigenmodes associated to a Neumann problem. This topic has been discussed in [34,33,12,21,22] where
first numerical results were given on eigenfunctions on Koch flake domains, see also [7,9] in the context of
finitely ramified fractals. In that respect, we believe that the method presented here will be useful since it takes
into account the fine scales in the ramifications.

In order to solve time dependent problems in the irregular domain, the spectral information can be
used, but for that, one needs to normalize the eigenmodes: in this paper, we propose a perturbation
method for normalizing the eigenmodes. This allows the spectral decomposition of any function compactly
supported in the domain to be found, and finally time dependent equations like the wave equation to be
addressed.

The paper is organized as follows: in Section 2, the geometry is presented in detail. In Section 3, we briefly
review some theoretical results on Sobolev spaces. Section 4 addresses the boundary value problems with
Laplace’s equation, as well as the transparent boundary conditions and the approximations of the Dirich-
let–Neumann operator, at the continuous level. In Section 5, a similar program is carried out for the Helm-
holtz equation. The discrete analogues of the methods are described in Section 6, where a self-similar finite
element method is proposed. Numerical results are presented in Section 7. Section 8 is concerned with two
applications: first, the computation of the spectrum and of the eigenmodes, and their normalization by a per-
turbation technique; second, a method for solving a time-dependent problem (here the wave equation) from
the knowledge of the spectral information.

The content of the paper can be generalized to other geometries: for example, straightforward generaliza-
tions are discussed in [2, Section 9]. It is also straightforward to extend all the methods presented below to the
snowflakes domains discussed in [5] (note that the Hausdorff dimension of the boundary is greater than one in
that case). In the forthcoming paper [3], we discuss the case when the rotation angles of the similarities used
for constructing X0 are nonzero, in which the Hausdorff dimension of C1 differs from one. In this case, some
modifications are needed when dealing with nonhomogeneous Neumann conditions.
2. The geometry of the model problem

2.1. The domain X0

Consider the following T-shaped subset of R2:
Y 0 ¼ Interiorðð½�1; 1� � ½0; 2�Þ [ ð½�2; 2� � ½2; 3�ÞÞ:

Let F1 and F2 be the affine maps in R2
F 1ðxÞ ¼ � 3

2
þ x1

2
; 3þ x2

2

� �
; F 2ðxÞ ¼

3

2
þ x1

2
; 3þ x2

2

� �
: ð1Þ
Note that F1 is the homothety of ratio 1
2

and center (�3,6) and F2 is the homothety of ratio 1
2

and center (3,6).
For an integer n P 1, we call An the set containing all the maps from {1, . . . ,n} to {1,2} (note that the car-

dinality of An is 2n) and for r 2An, we define the affine map in R2
MrðF 1; F 2Þ ¼ F rð1Þ � � � � � F rðnÞ: ð2Þ
Let us agree that A0 ¼ f0g and that M0ðF 1; F 2Þ is the identity. The open domain X0 is constructed as an infi-
nite union of subsets of R2 obtained by translating/dilating Y0
X0 ¼ Interior
[1
n¼0

[
r2An

MrðF 1; F 2ÞðY 0Þ
 !

: ð3Þ
The construction of X0 is displayed in Fig. 1. It may be seen that X0 � (�3,3) · (0,6).
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Remark 1. Note that similar construction may be done using dilations with ratii an, n 2 N, with a 2 (0, 1/2];
here we have chosen a = 1/2.

It is important to observe that, for the two points A = (�3/2,5/2) and B = (3/2, 5/2), and call
An ¼ ðF n

1 � F 2ÞðAÞ, Bn ¼ ðF n
2 � F 1ÞðBÞ, we have that

� limn!1An = limn!1Bn = (0, 6), therefore limn!1jAnBnj = 0,
� An 2 X0 and Bn 2 X0,
� The length of any curve joining An and Bn that is contained in X0 is greater than 3.

This implies that X0 is not a (�,d) domain as defined in Jones [15] and also Jonsson and Wallin [16], or
equivalently in dimension two a quasi-disk, see Maz’ja [25] so the general results for Sobolev spaces (see
[15,16,25]) cannot be used.
2.2. The boundary of X0

We define the bottom boundary of X0 by C0 = ([�1,1] · {0}) and R0 ¼ oX0 \ fðx1; x2Þ; x1 2 R; 0 < x2 < 6g.
Calling C1 = [�3,3] · {6}, one can check easily that
oX0 ¼ C0 [ R0 [ C1;
and that, in the last identity, the sets in the right hand side are disjoint.
2.3. Various subdomains of X0

For what follows, it is important to define the polygonal open domain obtained by stopping the above con-
struction at the step N, for N P 0
Y N ¼ Interior
[N
n¼0

[
r2An

MrðF 1; F 2ÞðY 0Þ
 !

: ð4Þ
It will be useful to define the infinitely ramified set XN
XN ¼ X0 n Y N�1 ¼ Interior
[1
n¼N

[
r2An

MrðF 1; F 2ÞðY 0Þ
 !

: ð5Þ
The following self-similarity property is true: XN is the union of 2N nonoverlapping translated copies of 1
2N � X0,

i.e.
XN ¼
[

r2AN

Xr; ð6Þ
where
Xr ¼MrðF 1; F 2ÞðX0Þ: ð7Þ

The bottom boundary of XN is defined by
CN ¼
[

r2AN

Cr � x : x2 ¼ 3
XN�1

i¼0

2�i

( )
; ð8Þ
where
Cr ¼MrðF 1; F 2ÞðC0Þ: ð9Þ

Let us stress that CN is strictly contained in oY N�1 \ x : x2 ¼ 3

PN�1
i¼0 2�i

n o
.
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3. Some function spaces on X0

We are interested in boundary value problems in X0. Since the boundary of X0 is very irregular, a good way
to give a sense to these problems (especially to boundary condition on C1) is to use variational or weak for-
mulations. For that, we need to give some basic results on Sobolev spaces on X0. For a more complete theory,
including a result on traces of functions on C1, we refer to [1].

For n P 0 and r 2An, call L2(Xr) the space of square integrable function on Xr. Consider the func-
tion space H1(Xr) = {v 2 L2(Xr) s.t. $v 2 (L2(Xr))2}, where $v is to be understood in the sense of
distributions.

Of course, for all n,n 0, 0 6 n 6 n 0, r 2An, g 2An0 such that Cg � Xr, it is possible to define the trace of
v 2 H1(Xr) on Cg. The trace operator on Cg is bounded from H1(Xr) to L2(Cg), and one can define the closed
subspace of H1(Xr)
VðXrÞ ¼ fv 2 H 1ðXrÞ s:t: vjCr ¼ 0g: ð10Þ
We will use the notation [ to indicate that there may arise constants in the estimates, which are independent
of the index n in Xn or Yn, or the index r in Xr.

Theorem 1. For all integer n P 0, and for all r 2An, for all u 2 H1(Xr).
kuk2
L2ðXrÞK 2�2nkruk2

L2ðXrÞ þ 2�nkujCrk2
L2ðCrÞ: ð11Þ
For all u 2 H1(X0),
X
r2An

kuk2
L2ðXrÞK 2�n kruk2

L2ðX0Þ þ kujC0k2
L2ðC0Þ

� �
: ð12Þ
Finally, the imbedding of H1(X0) in L2(X0) is compact.
4. A class of Poisson problems

4.1. Definition, existence and uniqueness results

Since the boundary of X0 is very irregular, we are led to use variational or weak formulations (especially for
boundary condition on C1).

Consider u 2 H
1
2ðC0Þ. We are interested in the variational problem: find w 2 H1(X0) such that
wjC0 ¼ u;
Z

X0
rw � rv ¼ 0; 8v 2VðX0Þ: ð13Þ
It can be seen that (13) is a weak formulation of a Poisson problem, i.e. Dw = 0 in X0, with a Dirichlet bound-
ary condition on C0, a homogeneous Neumann boundary condition on R0, and a generalized homogeneous
Neumann boundary condition on C1.

Proposition 1. For u 2 H
1
2ðC0Þ, problem (13) has a unique solution. This defines a bounded linear operator from

H
1
2ðC0Þ to H1(X0).
4.2. The Dirichlet to Neumann operator and transparent boundary conditions

In fact, Proposition 1 can be extended by replacing X0 with Xr and C0 by Cr, for r 2An and n P 0. This
observation leads us to define the harmonic lifting operator Hr from H

1
2ðCrÞ to H1(Xr): for all u 2 H

1
2ðCrÞ, the

trace of HrðuÞ on Cr is u and for all v 2VðXrÞ,
R

Xr rHrðuÞ � rv ¼ 0. Since A0 ¼ f0g, we denote by H0 the
harmonic lifting in X0. It is easy to verify that, for all u 2 H

1
2ðCrÞ,
HrðuÞ �M ðF ; F Þ ¼H0ðu �M ðF ; F ÞÞ: ð14Þ
r 1 2 r 1 2



Theorem 2. There exists a real number q, 0 < q < 1 such that for all u 2 H
1
2ðC0Þ,
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Z
XN
jrH0ðuÞj2 6 qN

Z
X0
jrH0ðuÞj2: ð15Þ
N
Remark 2. The estimate (15) is very important because it says that the contribution of X to the energy of
H0ðuÞ decays exponentially as N!1. This will allow the very accurate approximation of H0ðuÞjY n (n is a
fixed number, for example n = 0), by solving a boundary value problem in Yn with nonlocal boundary
conditions on Cr, r 2Anþ1. It will be constructed by approximating the Dirichlet–Neumann operator Tr on
Cr, which we introduce below.

For r 2An, one can define the operators Tr, from H
1
2ðCrÞ to their respective duals by
hT ru; vi ¼
Z

Xr
rHrðuÞ � rHrðvÞ ¼

Z
Xr
rHrðuÞ � r~v ð16Þ
for any function ~v 2 H 1ðXrÞ such that ~vjCr ¼ v. From the self-similarity of X0, we have that
8u; v 2 H
1
2ðCrÞ; hT ru; vi ¼ hT 0ðu �MrðF 1; F 2ÞÞ; ðv �MrðF 1; F 2ÞÞi; ð17Þ
where the duality pairing in left (resp. right) hand side of (17) is the duality ðH 1
2ðCrÞÞ0 � H

1
2ðCrÞ (resp.

ðH 1
2ðC0ÞÞ0 � H

1
2ðC0Þ).

Lemma 1. For all u 2 H
1
2ðC0Þ, for n P 1, the restriction of H0ðuÞ to Yn�1 is the solution to the following

boundary value problem: find û 2 H1ðY n�1Þ such that ûjC0 ¼ u and 8v 2VðY n�1Þ,
Z
Y n�1

rû � rvþ
X
r2An

hT 0ðûjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þi ¼ 0: ð18Þ
Furthermore, "v 2 H1(Yn�1),
hT 0u; vjC0i ¼
Z

Y n�1

rû � rvþ
X
r2An

T rûjCr ; vjCr

� �
¼
Z

Y n�1

rû � rvþ
X
r2An

hT 0ðûjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þi: ð19Þ
We see that, for a fixed arbitrary integer n > 0 (for example n = 1), once the nonlocal operator T0 is known,
the restriction of H0ðuÞ to the truncated domain Yn�1 can be computed exactly by solving the boundary value
problem (18) in Yn�1 with a boundary condition involving T0. It is important to understand that (18) is a Pois-
son problem in Yn�1, with Dirichlet boundary condition on C0, homogeneous Neumann condition on
oYn�1n(C0 [ Cn), and for each r 2An,
oû
on
þ T rûjCr ¼ 0 on Cr; ð20Þ
and all the operators Tr, r 2An are obtained readily from T0 by (17). Eq. (20) is a nonlocal boundary con-
dition, called transparent boundary condition. Transparent boundary conditions were proposed in computa-
tional physics for linear partial differential equations with constant coefficients. They allow the solution to
be computed in a bounded domain without errors. They are particularly useful in electromagnetism, since
one frequently deals with unbounded domains. There is a huge amount of literature on transparent boundary
conditions, see [17] for one of the first papers.

Furthermore, solving (18) is equivalent to successively solving 1 + 2 + � � � + 2n�1 boundary value problems
in Y0: indeed, an algorithm for solving (18) is as follows:
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Algorithm 1

� Loop: for p = 0 to n � 1,
– Loop: for r 2Ap (at this point, ûjCr is known)
* Solve the boundary value problem in Y0: find w 2 H1(Y0) such that wjC0 ¼ ûjCr �MrðF 1; F 2Þ andZ
Y 0

rw � rvþ
X2

i¼1

hT 0ðwjF iðC0Þ � F iÞ; vjF iðC0Þ � F ii ¼ 0; 8v 2VðY 0Þ:

* Set ûjMrðF 1;F 2ÞðY 0Þ ¼ w � ðMrðF 1; F 2ÞÞ�1.
Let us stress the fact that, in the numerical simulations of H0ðuÞjY n�1 , Algorithm 1 saves solving discrete
boundary value problems in the domain Yn�1, which is complicated when n is large. This is why the transpar-
ent boundary condition is well suited for numerical simulations, as soon as T0 or a good approximation to T0

is known. In Section 4.3, we review a method for approximating T0 as the limit of an inductive sequence of
operators, making use of (19).
4.3. An induction formula to approximate the Dirichlet–Neumann operator

Lemma 1, in the case n = 1, leads us to introduce the cone O of self-adjoint, positive semi-definite, bounded
linear operators from H

1
2ðC0Þ to its dual, vanishing on the constants, and the map M : O 7!O defined as fol-

lows: for Z 2 O, define MðZÞ by 8u 2 H
1
2ðC0Þ; 8v 2 H 1ðY 0Þ,
hMðZÞu; vjC0i ¼
Z

Y 0

rû � rvþ
X2

i¼1

hZðûjF iðC0Þ � F iÞ; vjF iðC0Þ � F ii; ð21Þ
where û 2 H 1ðY 0Þ is such that ûjC0 ¼ u and
8v 2VðY 0Þ;
Z

Y 0

rû � rvþ
X2

i¼1

hZðûjF iðC0Þ � F iÞ; vjF iðC0Þ � F ii ¼ 0: ð22Þ
Remark 3. From the definition of M, it can be seen that for all p P 1, if w satisfies the Poisson problem
Dw = 0 in Yp�1, with ow

on ¼ 0 on oYp�1n(C0 [ Cp), and with ow
on jCr �MrðF 1; F 2Þ ¼ �2pZðwjCr �MrðF 1; F 2ÞÞ;

r 2Ap, then ow
on jC0 ¼MpðZÞðwjC0Þ.

Let us define the norm iÆi on the space of linear and bounded operators from H
1
2ðC0Þ to ðH 1

2ðC0ÞÞ0:

kTk ¼ sup
v2H

1
2ðC0Þ;v 6¼0

kTvk
ðH

1
2ðC0ÞÞ0

kvk
H

1
2ðC0Þ

. Lemma 1 tells that T0 is a fixed point of M. In fact, we have the following

theorem, which says that T0 can be approximated to an arbitrary accuracy by using an induction formula
in O:

Theorem 3. The operator T0 is the unique fixed point of M. Moreover, for all Z 2 O, there exists a positive
constant C such that, for all r P 0,
kMrðZÞ � T 0k 6 Cq
r
4;
where q, 0 < q < 1 is the constant appearing in Theorem 2.

A typical loop for approximating T0 to the accuracy � is the following:

Algorithm 2

While iT0 � Zi > �
T0 = Z; Z ¼MðZÞ;
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5. Propagation problems and transparent boundary conditions

The goal of this section is to study the weak solutions of the Helmholtz equation that are satisfied by a
class of time-harmonic waves in the domain X0. The analysis of the problem uses the compact imbedding
of H1(X0) in L2(X0), see Theorem 1, and Fredholm’s alternative. Next, as in Section 4.2, we are going to
introduce transparent boundary conditions satisfied by the restriction of the solution to the truncated
domain Y0 (or Yn). We shall make extensive use of self-similarity in order to design an approximation
method for the operator entering this transparent condition. This method, which can be used for numerical
simulations, is not as simple as the one for the Poisson problem, because the equation is not invariant by
rescaling: as we go toward the finest structures of the ramified domain, diffusion effects dominate and the
wave is exponentially damped. Besides, this is precisely why the approximation of the Dirichlet–Neumann
operator will be possible.
5.1. The boundary value problem

For an integer n P 0, and for r 2An, given a real number k and u 2 H
1
2ðCrÞ (with the notation

Xr ¼MrðF 1; F 2ÞðX0Þ, Cr ¼MrðF 1; F 2ÞðC0Þ), let us consider the variational problem: find û 2 H 1ðXrÞ such
that
ûjCr ¼ u and 8v 2VðXrÞ;
Z

Xr
rû � rv� k

Z
Xr

ûv ¼ 0: ð23Þ
If it exists, û is a weak solution to the Helmholtz equation Dûþ kû ¼ 0 in Xr.
Let us define the operator Lr

k

Lr
k : VðXrÞ7!ðVðXrÞÞ0; hLr

k w; vi ¼
Z

Xr
rw � rv� k

Z
Xr

wv: ð24Þ
A scaling argument yields that, for all r 2An, v;w 2VðXrÞ,
hLr
k w; vi ¼ L0

k
4n
ðw �MrðF 1; F 2ÞÞ; v �MrðF 1; F 2Þ

D E
: ð25Þ
Let us call ðkerðLr
k ÞÞ
� the closed subspace of H

1
2ðCrÞ
ðkerðLr
k ÞÞ
� ¼ u 2 H

1
2ðCrÞ s:t:

8~u 2 H 1ðXrÞ with ~ujCr ¼ u; 8v 2 kerðLr
k Þ;R

Xr r~u � rv� k~uv ¼ 0

�����
( )

: ð26Þ
From the geometrical self-similarity, it can be verified that for all r 2An,
ker L0
k

4n

� �� ��
¼ fu �MrðF 1; F 2Þ; u 2 ðkerðLr

k ÞÞ
�g: ð27Þ
Proposition 2. For all n 2 N, there exists a countable set SpD;n ¼ fkp; p 2 Ng of positive numbers, with kp 6 kp+1

and limp!1kp = +1 such that for r 2An,

� for k 2 R n SpD;n, the operator Lr
k is one to one, with a bounded inverse,

� for all k 2 SpD,n, kerðLr
k Þ has a positive and finite dimension.

One can obtain a Hilbertian basis of VðXrÞ by assembling bases of kerðLr
k Þ, k 2 SpD,n. We have
SpD;n ¼ 4nSpD;0: ð28Þ

For u 2 ðkerðLr

k ÞÞ
�

(see (26)), there exists û 2 H 1ðXrÞ satisfying (23), and û is unique up to the addition of func-

tions in kerðLr
kÞ. Problem (23) defines an injective bounded operator Hr

k from ðkerðLr
k ÞÞ
�

to H 1ðXrÞ= kerðLr
k Þ by

Hr
k ðuÞ ¼ û.
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Proof. Let us first focus on the case n = 0. The compact imbedding of H1(X0) in L2(X0), stated in Theorem 1,
implies the existence of Sp0 with the properties stated above. We have seen in Section 4 that 0 62 SpD,0. Then,
for n > 0, identity (25) yields that SpD,n given by (28) has the properties stated above. The last statement of
Proposition 2 is a consequence of Fredholm’s alternative. h

Remark 4. In relation with Proposition 2, we know from (28) that for any k 2 R, there exists a nonnegative
integer NðkÞ ¼ minfn 2 N such that 8p P n; 8r 2Ap; Lr

k is coercive on VðXrÞg. We have N(k) = 0 if k 6 0
and N(k) 	 log(k) as k! +1.

From the geometrical self-similarity, it can be verified that for all r 2An,
Hr
k �Mr ¼H0

k
4n
: ð29Þ
Remark 5. One can prove the analogue of Lemma 2: there exist two positive constants k0 and l < 1 such that,
for all k < k0, kerðL0

kÞ ¼ f0g and for all u 2 H
1
2ðC0Þ, kH0

kðuÞkH 1ðX1Þ 6 lkH0
kðuÞkH1ðX0Þ. From this, (29) and

Remark 4, we have the analogue of Theorem 2: for all u 2 ðkerðL0
kÞÞ
�, kH0

kðuÞkH 1ðXpÞ decays exponentially with
p as p!1.

Remark 6. Similarly, for all n 2 N and r 2An, the eigenvalues of the operator eLr
eLr : H 1ðXrÞ7!ðH 1ðXrÞÞ0; heLru; vi ¼
Z

Xr
ru � rv ð30Þ
form a nondecreasing sequence of nonnegative numbers ðlpÞp2N with l0 = 0, l1 > 0, and limp!1lp = +1.
These numbers do not depend on r. Calling SpN ;n ¼ flp; p 2 Ng, we have SpN,n = 4nSpN,0.
5.2. The Dirichlet–Neumann operators and transparent boundary conditions

For r 2An, n P 0, the Dirichlet–Neumann operator T r
k : ðkerðLr

k ÞÞ
� 7! ððkerðLr

k ÞÞ
�Þ0 is defined by:

8u; v 2 ðkerðLr
k ÞÞ
�,
hT r
k u; vi ¼

Z
Xr
rHr

k ðuÞ � r~v� k
Z

Xr
Hr

k ðuÞ~v ð31Þ
for any function ~v 2 H 1ðXrÞ such that ~vjCr ¼ v. We have that, for all u; v 2 ðkerðLr
k ÞÞ
�,
hT r
k u; vi ¼ T 0

k
4n
ðu �MrðF 1; F 2ÞÞ; v �MrðF 1; F 2Þ

D E
: ð32Þ
For k 62 SpD,n, T r
k is a bounded self-adjoint operator from H

1
2ðCrÞ to its dual.

For simplicity, since A0 has only one element, we use the notation H0
k and T 0

k if n = 0.

Lemma 2. The operator T r
k is a perturbation of a bounded self-adjoint coercive operator from ðkerðLr

k ÞÞ
� to its

dual by a compact operator.

Lemma 3. For all u 2 ðkerðL0
kÞÞ
�
, the restriction û to Yn�1 of any function in the class H0

kðuÞ satisfies, for all

r 2An,
ûjCr 2 ðkerðLr
k ÞÞ
� ð33Þ
and
ûjC0 ¼ u; and

Z
Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

hT r
k ûjCr ; vjCri ¼ 0 ð34Þ
for all v 2VðY n�1Þ, such that for all r 2An, vjCr 2 ðkerðLr
k ÞÞ
�
. A solution to (33) and (34) can be extended to a

solution to (23) in a unique manner. Problems (33) and (34) have a unique solution up to the addition of restrictions
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of functions of kerðL0
kÞ to Yn�1. Furthermore, "v 2 H1(Yn�1), such that vjC0 2 ðkerðL0

kÞÞ
�
, and for all r 2An,

vjCr 2 ðkerðLr
k ÞÞ
�
,

hT 0
ku; vjC0i ¼

Z
Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

hT r
k ûjCr ; vjCri

¼
Z

Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

T 0
k

4n
ðûjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þ

D E
: ð35Þ
Proof. Since it greatly helps understanding what follows, in particular Algorithms 3 and 4 and Lemma 7, we
choose to reproduce the proof contained in [1].

We skip the proof that the restriction of a function in H0
kðuÞ to Yn�1 satisfies (33) and (34), since it is easily

seen. We aim at proving that each solution to (33) and (34) can be extended in a unique manner to a solution
of the original problem (23). This is clear if k

4n 62 SpD;0. Thus, we consider the case when k
4n 2 SpD;0.

The subspace kerðLr
k Þ is finite dimensional. Furthermore, we can apply Holmgren’s unique continuation

theorem, see [30]: if v 2 kerðLr
k Þ and if the normal derivative of v on Cr is zero, then v = 0. Note that ov

on jCr ¼ 0
if and only if the operator from H

1
2ðCrÞ to its dual: w 7!

R
Xr r~w � rv� k

R
Xr ~wv, where ~w is any lifting of w in

H1(Xr), is zero.
If the dimension of kerðLr

k Þ is d > 0, let (/r,i)i=1,. . .,d be a basis of kerðLr
k Þ. From the previous unique

continuation result, we see that
o/r;i

on jCr , i = 1, . . . ,d are linearly independent. This implies that
o/r;i

on jCr ;w
D E� �

i¼1;...;d
;w 2 H

1
2ðCrÞ

	 

¼ Rd . Therefore, there exists a family (wr,i)i=1,. . .,d of linearly independent

functions in H
1
2ðCrÞ such that

R
Xr r~wr;i � r/r;j � k

R
Xr

~wr;i/r;j ¼ di;j, where ~wr;i is an arbitrarily chosen
function in VðX0Þ such that ~wr;ijCr ¼ wr;i and ~wr;ijXr0 ¼ 0 for each r0 2An, r 0 6¼ r. We have� �
VðX0Þ ¼ fv 2VðX0Þ; vjCr 2 ðkerðLr
k ÞÞ
�
; 8r 2Ang 
 


r2An

Spanð~wr;j; j ¼ 1; . . . ; dÞ : ð36Þ
Let û be a solution to (33) and (34): in order to extend it to a solution of (23), we have, for each r 2An, to
choose the extension in Hr

k ðûjCrÞ, which is well defined since ûjCr 2 ðkerðLr
k ÞÞ
�. With any such choice, the ex-

tended function belongs to H1(X0) and satisfies the Helmholtz equation in Yn�1 and Xr, r 2An. But, for the
extension to satisfy (23), its normal derivative must also be continuous across Cr, r 2An. It can easily be seen
that for each r 2An, there exists a unique function ûr 2Hr

kðûjCrÞ, such that calling ~u the extension of û by ûr

in Xr, 8r 2An, we have 8r 2An, "i = 1, . . . ,d,
R

X0 r~u � r~wr;i � k
R

X0 ~u~wr;i ¼ 0. From this and from (33) and

(34) and (36), we deduce that ~u is a solution to (23).
The last two assertions of the lemma follow easily. h

We see from (32) and (34) that, if the nonlocal operator T 0
k

4n
is known (which implies that ðkerðL0

k
4n
Þ� is

known), then the restriction of H0
kðuÞ to Yn�1, n P 1, is characterized as the solution of a boundary value

problem in Yn�1, with a boundary condition involving T 0
k

4n
. Moreover, in the most frequent case when

k
4p 62 SpD;0, "p = 0, . . . ,n, and if the operators T 0

k
4p

, p = 1, . . . ,n are known (or accurately approximated), then

solving (34) is equivalent to solving successively 1 + 2 + � � � + 2n�1 boundary value problems in Y0 as follows:

Algorithm 3

� Loop: for p = 0 to n � 1,
– Loop: for r 2Ap (at this point, ûjCr is known)
* Solve the boundary value problem in Y0: find w 2 H1(Y0) such that wjC0 ¼ ûjCr �MrðF 1; F 2Þ and
8v 2VðY 0Þ,Z

Y 0

rw � rv� k
4p wv

� �
þ T 0

k
4pþ1
ðwjF 1ðC0Þ � F 1Þ; vjF 1ðC0Þ � F 1

� �
þ T 0

k
4pþ1
ðwjF 2ðC0Þ � F 2Þ; vjF 2ðC0Þ � F 2

� �
¼ 0:

* Set ûjMrðF 1;F 2ÞðY 0Þ ¼ w � ðMrðF 1; F 2ÞÞ�1.
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In the general case, if k
4p 2 SpD;0, for some p, 1 6 p < n, then, as in the proof of Lemma 3, additional finite

dimensional linear systems must be solved at the step p of Algorithm 3, in order to enforce the continuity of
the normal derivative of û at the interfaces Cr, r 2Ap.

This method can be transposed at a discrete level (see Sections 6 and 7 for a related numerical method and
simulations).

We are left with computing the operators T 0
k

4n
. Eqs. (32), (34) and (35) can be seen as a backward induction

formula with respect to n, in order to compute T 0
k . The backward character of the induction makes the exact

construction of T 0
k impossible. Yet, observing that limn!1T 0

k
4n
¼ T 0 (T0 is the Dirichlet–Neumann operator for

the Poisson problem, see Section 4.2) enables the initialization of the induction by approximating T 0
k

4n
by T0,

for n large enough. The goal of what follows is to carry out this program in details.

5.3. Approximations of the Dirichlet–Neumann operators

5.3.1. An induction formula to approximate the Dirichlet–Neumann operators
For r 2An, n P 0 and p 2 N, p P n, let us introduce the operators Lr;p

k

Lr;p
k : VðXrÞ 7! VðXrÞð Þ0; hLr;p

k u; vi ¼
Z

Xr
ru � rv� k

Z
Y p�1\Xr

uv;
agreeing that Y�1 = ;. Note that for u 2 H
1
2ðCrÞ, a function û 2 H 1ðXrÞ such that
ûjCr ¼ u and 8v 2VðXrÞ;
Z

Xr
rû � rv� k

Z
Y p�1\Xr

ûv ¼ 0 ð37Þ
is a weak solution to the Helmholtz equation Dûþ k1Y p�1\Xr û ¼ 0 in Xr.
Let us call ðkerðLr;p

k ÞÞ
� the closed subspace of H

1
2ðCrÞ:
ðkerðLr;p
k ÞÞ

� ¼ u 2 H
1
2ðCrÞ s:t:

8~u 2 H 1ðXrÞ with ~ujCr ¼ u; 8v 2 kerðLr;p
k ÞR

Xr r~u � rv� k
R

Y p�1\Xr ~uv ¼ 0

�����
( )

: ð38Þ
We have the analogue of Proposition 2:

Proposition 3. For all n; p 2 N with p P n, there exists a countable set SpD;n;p ¼ fkq; q 2 Ng of positive numbers,

with kq 6 kq+1 and limq!1kq = +1 such that, for all r 2An,

� for all k 2 R n SpD;n;p, the operator Lr;p
k is one to one, with a bounded inverse,

� for all k 2 SpD,n,p, kerðLr;p
k Þ has a positive and finite dimension.

We have
SpD;n;p ¼ 4nSpD;0;p�n: ð39Þ

If u 2 ðkerðLr;p

k ÞÞ
�
, then there exists û 2 H 1ðXrÞ satisfying (37), and û is unique up to functions in kerðLr;p

k Þ. Prob-

lem (37) defines an injective bounded operator Hr;p
k from ðkerðLr;p

k ÞÞ
�

to H 1ðXrÞ= kerðLr;p
k Þ by Hr

k ðuÞ ¼ û.

The modified Dirichlet–Neumann operator T r;p
k : ðkerðLr;p

k ÞÞ
� 7! ððkerðLr;p

k ÞÞ
�Þ0 is defined by: 8u; v 2

ðkerðLr;p
k ÞÞ

�,
hT r;p
k u; vi ¼

Z
Xr
rHr;p

k ðuÞ � r~v� k
Z

Y p�1\Xr
Hr;p

k ðuÞ~v ð40Þ
for any function ~v 2 H 1ðXrÞ such that ~vjCr ¼ v, and where Hr;p
k ðuÞ stands for any function in the class Hr;p

k ðuÞ,
if k 2 SpD,n,p.

The analogues of Lemmas 2 and 3 are stated in the following lemma:

Lemma 4. The operator T r;p
k is the perturbation of a bounded and coercive self-adjoint operator from ðkerðLr;p

k ÞÞ
�

to its dual by a compact operator.
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For all n; p 2 N, with n 6 p, r 2An, u; v 2 ðkerðLr;p
k ÞÞ

�, we have u �MrðF 1; F 2Þ 2 ker L0;p�n
k

4n

� �� ��
andD E
hT r;p
k u; vi ¼ T 0;p�n

k
4n
ðu �MrðF 1; F 2ÞÞ; v �MrðF 1; F 2Þ : ð41Þ
If n P 1, then for all u 2 ðkerðL0;p
k ÞÞ

�
, the restriction û to Yn�1 of any function in the class H0;p

k ðuÞ satisfies the

following boundary value problem: for all r 2An,
ûjCr 2 ðkerðLr;p
k ÞÞ

�
; ð42Þ
and is a solution to the following boundary value problem: ûjC0 ¼ u, and
ûjC0 ¼ u; and

Z
Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

hT r;p
k ðûjCrÞ; vjCri ¼ 0: ð43Þ
8v 2VðY n�1Þ such that for all r 2An, vjCr 2 ðkerðLr;p
k ÞÞ

�
, ((43) can be written in terms of T 0;p�n

k
4n

thanks to (41))

Problems (42) and (43) have a unique solution up to restrictions of functions of kerðL0;p
k Þ to Yn�1. Furthermore,

"v 2 H1(Yn�1), such that vjC0 2 ðkerðL0;r
k ÞÞ

�
and for all r 2An, vjCr 2 ðkerðLr;p

k ÞÞ
�
,

hT 0;p
k u; vjC0i ¼

Z
Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

hT r;p
k ûjCr ; vjCri

¼
Z

Y n�1

rû � rv� k
Z

Y n�1

ûvþ
X
r2An

T 0;p�n
k

4n
ðûjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þ

D E
: ð44Þ
If T0 is available, then one can construct T 0;p
k by the following induction:
Algorithm 4 (The inductive construction of T 0;p
k ). Let us construct the closed subspaces DðjÞ of H

1
2ðC0Þ and the

operators (Z(j))06j6p by

� Dð0Þ ¼ H
1
2ðC0Þ and Z(0) = T0.

� Induction formula (I.F.). Suppose that after j steps, j < p, we have constructed the closed subspace DðjÞ of
H

1
2ðC0Þ with finite codimension and the operator Z(j), from DðjÞ to its dual, such that Z(j) is a perturbation

of a coercive self-adjoint operator on DðjÞ by a compact operator. We call W(j) the finite dimensional space
containing the functions w 2VðY 0Þ, such that wjCr �MrðF 1; F 2Þ 2 DðjÞ, 8r 2A1, andZ Z
Y 0

rw � rv� k

4p�j�1
Y 0

wvþ
X
r2A1

ZðjÞðwjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þ
� �

¼ 0;

8v 2VðY 0Þ; with vjCr �MrðF 1; F 2Þ 2 DðjÞ; 8r 2A1:
We call Dðjþ1Þ the closed subspace of H
1
2ðC0Þ containing the functions v such that "w 2W(j),Z Z
Y 0

rw � r~v� k

4p�j�1
Y 0

w~vþ
X
r2A1

ZðjÞðwjCr �MrðF 1; F 2ÞÞ;~vjCr �MrðF 1; F 2Þ
� �

¼ 0;

8~v 2 H 1ðY 0Þ; with ~vjCr �MrðF 1; F 2Þ 2 DðjÞ; 8r 2A1; and ~vjC0 ¼ v:
Then, from Fredholm’s alternative, we know that the problem: find û 2 H 1ðY 0Þ such that ûjC0 ¼ u,
ûjCr �MrðF 1; F 2Þ 2 DðjÞ, 8r 2A1, and
Z

Y 0

rû � rv� k

4p�j�1

Z
Y 0

ûvþ
X
r2A1

ZðjÞðûjCr �MrðF 1; F 2ÞÞ; vjCr �MrðF 1; F 2Þ
� �

¼ 0

8v 2VðY 0Þ such that 8r 2A1; vjCr �MrðF 1; F 2Þ 2 DðjÞ ð45Þ

has a solution if u 2 Dðjþ1Þ, which is unique up to functions in W(j). Then we can define the operator Z(j+1)

from Dðjþ1Þ to its dual, by: 8u; v 2 Dðjþ1Þ,
Zðjþ1Þu; v
� �

¼
Z

Y 0

rû � r~v� k

4p�j�1

Z
Y 0

û~vþ
X
r2A1

ZðjÞðûjCr �MrðF 1; F 2ÞÞ;~vjCr �MrðF 1; F 2Þ
� �

;

8~v 2 H 1ðY 0Þ; with ~vjCr �MrðF 1; F 2Þ 2 DðjÞ; 8r 2A1; and ~vjC0 ¼ v;
where û is a solution to (45). It can be seen that Z(j+1) has the same properties as Z(j).
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Proposition 4. The operators constructed by Algorithm 4 satisfy: for j 6 p,
ZðjÞ ¼ T 0;j
k

4p�j
and DðjÞ ¼ ker L0;j

k
4p�j

� �� ��
:

Remark 7. In fact, for k belonging to a dense subset in R, the domains DðjÞ, 0 6 j 6 p all coincide with
H

1
2ðC0Þ.

Finally, the following result says that the original Dirichlet–Neumann operator T r
k can be approximated by

the modified operator T r;p
k :

Theorem 4. For r 2An and k 62 SpD,n, there exists P(k,n) P n, such that for all p P P(k,n), the operator Lr;p
k is

one to one, and there exists a constant C > 0 (depending of k but not of n and p), such that, for p P P(k,n),
kðLr;p
k Þ
�1 � ðLr

k Þ
�1k 6 C2�n�p; ð46Þ
and the operator T r;p
k is bounded from H

1
2ðCrÞ to its dual, with
kT r;p
k � T r

kk 6 C2�n�p: ð47Þ
Proof. Since k 62 SpD,n, Lr
k is one to one. From (12), we have that kLr;p

k � Lr
kkK 2�n�p and therefore limp!1

kLr;p
k � Lr

kk ¼ 0. It is a standard matter to deduce the desired results from the previous observations. h
5.3.2. Stability of the approximation to the Dirichlet–Neumann operator

In practice, T0 is not available, and one has to initialize the above mentioned backward induction by
approximations of T0. The approximation of T0 is constructed by Algorithm 2. The following theorem gives
an error estimate for the approximation of T 0

k :

Theorem 5. For all R 2 O, p; q 2 N, consider the sequence ZðnÞq;p, 0 6 n 6 p:

� Zð0Þq;p ¼MqðRÞ,
� for 0 6 j < p, Zðjþ1Þ

q;p is obtained from ZðjÞÞq;p by the induction (I.F.) in Algorithm 4,

where M has been introduced in (21) and (22). Assume that k 62 SpD,0. Then there exist two integers P(k) and Q(k)

such that for all p > P(k), for all q > QðkÞZðpÞq;p is a bounded operator from H
1
2ðC0Þ to its dual, and there exists a

constant C such that for all p > P(k), q > Q(k),
kZðpÞq;p � T 0
kk 6 Cðq

q
4 þ 2�pÞ; ð48Þ
where 0 < q < 1 is the constant introduced in (15).
6. A self-similar finite element method

6.1. Self-similar triangulations of X0

To transpose the methods described above to finite element methods, one needs to use special
triangulations of X0. Before defining the triangulations, let us define, for an affine map G in R2 and a
set of triangles T, the set of triangles GðTÞ, obtained by transforming each triangle of T by the
map G.

In what follows, we shall consider a regular family of triangulations T0
h of Y0 (see [6]), where the positive

real number h stands for the maximal diameter of a triangle in T0
h, with the special property that the set of

nodes of T0
h lying on F1(C0) (respectively F2(C0)) is the image by F1 (resp. F2) of the set of nodes of T0

h lying on
C0.
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Thanks to this special property, the sets of triangles
Tn
h ¼

[n
p¼0

[
r2Ap

MrðF 1; F 2ÞðT0
hÞ
form a regular family of triangulations of Yn, because the intersection of two different triangles is either empty,
or a common vertex to both triangles, or a common edge to both triangles, and because the regularity property
is inherited from that of T0

h. Similarly, one can define triangulations of X0 by
Th ¼
[1
p¼0

[
r2Ap

MrðF 1; F 2ÞðT0
hÞ:
The first two steps of the construction of Th are depicted in Fig. 2.

6.2. Finite elements

Let us introduce the spaces of piecewise linear functions
V hðY nÞ ¼ fvh 2 C0ðY nÞ; 8s 2Tn
h; vhjs is linearg � H 1ðY nÞ; VhðY nÞ ¼ V hðY nÞ \VðY nÞ: ð49Þ
Similarly,
V hðX0Þ ¼ fvh 2 H 1ðX0Þ; 8s 2Th; vhjs is linearg; VhðX0Þ ¼ V hðX0Þ \VðX0Þ: ð50Þ
It is clear that for all vh 2 Vh(X0), the restriction of vh to Yn belongs to Vh(Yn).
Let Vh(Cn) (resp. Vh(Cr), r 2An) be the space of the traces of the functions of Vh(X0) on Cn (resp. Cr). It is

clear that for all vh 2 Vh(Cr), vh �MrðF 1; F 2Þ 2 V hðC0Þ.
We have the approximation result, whose proof is easy and skipped for brevity:

Lemma 5. For all v 2 H1(X0),
lim
h!0

inf
vh2V hðX0Þ

kv� vhkH1ðX0Þ ¼ 0:
6.3. The finite element approximation to Poisson problems

6.3.1. Discrete Poisson problems and transparent boundary conditions

Given uh 2 Vh(C0), we consider the discrete counterpart of (13): find wh 2 Vh(X0) such that
whjC0 ¼ uh;

Z
X0
rwh � rvh ¼ 0; 8vh 2VhðX0Þ: ð51Þ
Fig. 2. The construction of the triangulation.
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Exactly as in Proposition 1, problem (51) has a unique solution. This permits to define discrete harmonic lift-
ing operator H0

h : V hðC0Þ7!V hðX0Þ, H0
hðuhÞ ¼ wh. A straightforward consequence of Céa’s lemma (see [6]) is

the following result:

Proposition 5. Consider u 2 C0ðC0Þ such that u 2 Vh(C0), for the whole family of meshes Th. We have
lim
h!0
kH0ðuÞ �H0

hðuÞkH1ðX0Þ ¼ 0:
Remark 8. Proposition 5 can be much improved if global regularity results on H0ðuÞ are available. Obtaining
such regularity results is an open problem to our knowledge. It will be the topic of forthcoming works.

We can also define the discrete Dirichlet–Neumann operator T 0
h : V hðC0Þ 7! ðV hðC0ÞÞ0
hT 0
huh; vhi ¼

Z
X0
rH0

hðuhÞ � rH0
hðvhÞ ¼

Z
X0
rH0ðuhÞ � r~vh ð52Þ
for any function ~vh 2 V hðX0Þ such that ~vhjC0 ¼ vh. If T 0
h is available, one can apply the discrete analogue to

Algorithm 1 in order to compute H0
hðuhÞjY n , for any fixed integer n P 0. The next step is to compute T 0

h or
an accurate approximation of T 0

h. The construction is analogue to the one presented in Section 4.3. It is based
on the following result, which can be proved in the same manner as for Theorem 2.

Theorem 6. There exists a constant q < 1, independent of h such that for all uh 2 Vh(C0),
Z
XN
jrH0

hðuhÞj2 6 qN

Z
X0
jrH0

hðuhÞj2: ð53Þ
Exactly as for the continuous problem, we introduce the cone Oh of self adjoint, positive semi-definite,
bounded linear operators from Vh(C0) to its dual, vanishing on the constants, and the map Mh : Oh 7!Oh

defined as follows: for Zh 2 Oh, define MhðZhÞ by "uh 2 Vh(C0), "vh 2 Vh(Y0),
hMhðZhÞuh; vhjC0i ¼
Z

Y 0

rûh � rvh þ
X2

i¼1

hZhðûhjF iðC0Þ � F iÞ; vhjF iðC0Þ � F ii; ð54Þ
where ûh 2 V hðY 0Þ is such that ûhjC0 ¼ uh and
8vh 2 V hðY 0Þ with vhjC0
¼ 0;

Z
Y 0

rûh � rvh þ
X2

i¼1

hZhðûhjF iðC0Þ � F iÞ; vhjF iðC0Þ � F ii ¼ 0: ð55Þ
The analogue of Theorem 3 is:

Theorem 7. The operator T 0
h is the unique fixed point of Mh and for all Zh 2 Oh, there exists a positive constant C

independent of n such that, for all n P 0,
kMn
hðZhÞ � T 0

hk 6 Cq
n
4; ð56Þ
where q, 0 < q < 1 is the constant appearing in Theorem 6.

Theorem 7 says that the discrete counterpart of Algorithm 2 can be used for computing T 0
h.

6.3.2. The numerical implementation of the induction formula

The central part of Algorithm 2 is the computation of MhðZhÞ for Zh 2 Oh.
Let us call Nh(Y0) (resp. N) the dimension of Vh(Y0) (resp. Vh(C0)). Call (xi)i=1,. . .,N the abscissa of the mesh-

nodes lying on C0, ordered increasingly. Let us introduce the nodal basis ð/iÞi¼1;...;NhðY 0Þ of Vh(Y0) ordered as
follows:

1. for j = 1, . . . ,N, /j corresponds to the node (xj, 0) 2 C0.
2. for i = 1,2 and j = 1, . . . ,N, /iN+j corresponds to the node Fi(xj, 0) 2 Fi(C

0).

3. for 3N < j 6 Nh(Y0), the node corresponding to /j belongs to Y 0 n ðC0 [ C1Þ.
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Consider the bilinear for ah : V hðY 0Þ � V hðY 0Þ7!R: ahðuh; vhÞ ¼
R

Y 0 ruh � rvh, and let A be the matrix of ah

in the nodal basis described above. We have the block decomposition
A ¼
AC0;C0 0 AC0;I

0 AC1;C1 AC1;I

AT
C0;I AT

C1;I AI;I

0B@
1CA; AC0;C0 2 RN�N ;

AC1;C1 2 R2N�2N :
ð57Þ
The block AI,I is positive definite; it is the matrix arising when dealing with a Poisson problem with Dirichlet
conditions on C0 [ C1 and Neumann conditions on oY0n(C0 [ C1). The Schur complement of A obtained by
eliminating the degrees of freedom corresponding to the mesh nodes in Y 0 n ðC0 [ C1Þ is S 2 R3N·3N
S ¼
SC0;C0 SC0;C1

ST
C0;C1 SC1;C1

 !
;

SC0;C0 ¼ AC0;C0 � AC0;I A
�1
I;I AT

C0;I 2 RN�N ;

SC1;C1 ¼ AC1;C1 � AC1;I A
�1
I;I AT

C1;I 2 R2N�2N ;

SC0;C1 ¼ �AC0;IA
�1
I;I AT

C1;I 2 RN�2N :

ð58Þ
Denoting O the cone of the positive semi-definite matrices Z 2 RN�N such that for i = 1, . . . ,N,
PN

j¼1Zij ¼ 0, it
is clear from the interpretations of SC0;C0 , SC1;C1 and SC0;C1 given above that the matrix counterpart of the oper-
ator Mh defined in (54) and (55) is the operator M :O ´ O:
MðZÞ ¼ SC0;C0 � SC0;C1 SC1;C1 þ
Z 0

0 Z

� �� ��1

ST
C0;C1 : ð59Þ
As a corollary to Theorem 7, we have the

Proposition 6. For any Z 2 O, the sequence Mn(Z) converges geometrically to the unique fixed point T of M, and

T is the matrix of the discrete Dirichlet–Neumann operator T 0
h defined in (52) in the nodal basis of Vh(C0).

Proposition 6 tells us that, for obtaining an approximation of the matrix T with an accuracy � (in a fixed
matrix norm), one can start from any matrix Z 2 O, (Z = 0 is possible) and repeat M(Z) Z, O(jlog �j) times.
Assuming that SC0;C0 , SC1;C1 and SC0;C1 are known, and performing a Cholesky factorization of
SC1;C1 þ
Z 0

0 Z

� �
;

the map M(Z) Z requires O(N3) operations.
Thanks to the sparsity of the matrix A, and using an efficient algorithm for factorizing AII (for example

SuperLU), one may compute the matrices SC0;C0 , SC1;C1 and SC0;C1 in O(N3) operations. This has to be done
once and for all. Finally, one may approach T to an accuracy � with a work of O(jlog �j)N3 operations.

6.4. The finite element approximation to Helmholtz problems

We are interested in the discrete version of (23): find û 2 V hðX0Þ such that
ûhjCr ¼ uh and 8v 2VhðXrÞ;
Z

Xr
rûh � rvh � k

Z
X0

ûhv ¼ 0: ð60Þ
All the results proved in Section 5 have their discrete counterparts, as soon as the discrete analogous of Holm-
gren’s theorem (used in the proofs of Lemmas 3 and 4) is true (such a result may not hold for any mesh and
wavenumber, but in practice, it is almost ever true).

Here, we do not discuss the convergence of the discrete method when the step h tends to 0. For that, one has
to prove the convergence of the spectrum of the discrete problem to the spectrum of the continuous problem
(SpD,n introduced in Section 5.1). This may be done by using the results contained in [6]. Instead, let us discuss
the analogue of the induction formula (I.F.) in Algorithm 4, working directly at the matrix level with the same
notations as in Section 6.3.2. The matrix of the bilinear form V hðY 0Þ � V hðY 0Þ 7!R: ðuh; vhÞ 7!R

Y 0 ruh � rvh � k
R

Y 0 uhvh in the nodal basis is A � kB where A is the stiffness matrix introduced in Section
6.3.2 and where B is the mass matrix. Both A and B have the block decomposition described in (57).
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The counterpart of problem (45) is: given U 2 RN , to find bU I and ÛC1 such that
AC1;C1 AC1;I

AT
C1;I AI;I

 !
� k4j�pþ1

BC1;C1 BC1;I

BT
C1;I BI ;I

 !
þ

eZ ðjÞ 0

0 0

 ! !
ÛC1

Û I

 !
¼ �

0

ðAT
C0;I � k4j�pþ1BT

C0;IÞU

 !
;

ð61Þ

where
eZ ðjÞ ¼ ZðjÞ 0

0 ZðjÞ

 !
:

Let us assume that the real number k is such that, for all j, 0 6 j 6 p, the matrix
GðjÞk ¼
AC1;C1 � k4j�pþ1BC1;C1 þ eZ ðjÞ AC1;I � k4j�pþ1BC1;I

AT
C1;I � k4j�pþ1BT

C1;I AI;I � k4j�pþ1BI ;I

 !

in the left hand side of (61) is invertible. This occurs for k in a dense subset of R. Then the discrete counterpart
of the induction formula (I.F.) is
Zðjþ1Þ ¼ AC1;C1 � k

4p�j�1
BC1;C1 � 0;AC0;I �

k

4p�j�1
BC0;I

� �
GðjÞk

� ��1 0

AT
C0;I � k

4p�j�1 BT
C0;I

 !
: ð62Þ
We use the following algorithm in order to approximate the discrete version of T 0
k : for all R 2 O, p; q 2 N, we

consider the sequence ZðjÞq;p, 0 6 j 6 p:

� Zð0Þq;p ¼ MqðRÞ where M has been introduced in (59),
� for 0 6 j < p, Zðjþ1Þ

q;p is obtained from ZðjÞÞq;p by the induction (62).

7. Numerical results

A software has been written in C++ for implementing the methods described above.
In the numerical tests, we have taken for X0 a dilation by the factor p of the domain described in Section 2.

The mesh used for Y0 is plotted in Fig. 3. It has the property described in Section 6.1, which permits the con-
struction of a self-similar mesh of X0. Note that there are 40 mesh nodes on C0, i.e. N = 40.
Fig. 3. The mesh used for Y0.
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7.1. Computation of T0

The first thing to do is to compute T0 ((more exactly its discrete counterpart) by applying Algorithm 2: we
compute it for both the Laplace operator and the operator divv$ where
v ¼
1 0

0 100

� �
:

Note that since the number of nodes on C0 is 40, the discrete Dirichlet–Neumann operator can be represented
by a dense square matrix of order 40.

In Fig. 4, we plot the Frobenius norm of Mq+1(0) �Mq(0) for the two cases above. We see that the norm of
the increment Mq+1(0) �Mq(0) decays exponentially as q!1 and that the decay factor is quite small (of the
order 10 · �6 in the case of the Laplace operator and 10�4 in the anisotropic case). We see that a few iterations
are enough to have a very accurate approximation of the discrete version of T0.

7.2. Computation of T 0
k for k = 1

We take k = 1, and we approximate the discrete version of T 0
k by the construction given at the end of Sec-

tion 6.4. We choose q = 4 because the numerical tests in Section 7.1 show that four iterations of the fixed point
Algorithm 2 are enough for computing T 0

h. Then we test the method for p 6 27. There is no point in taking
larger values of p when working in double precision, because 4�27 is of the order of the machine smallest
Fig. 4. The Frobenius norms of the increments Mq+1(0) �Mq(0) (in log-scale) vs. q.

Fig. 5. The Frobenius norms of the increments ZðpÞ4;p � Zðp�2Þ
4;p�2 (in log-scale) as a function of p.



Fig. 6. ðH0
kuÞjY 2 with k = 1 and u ¼ ðx

2
1
�p2Þ2

p4 .
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double precision number. In Fig. 5 we plot the Frobenius norm of the increments ZðpÞ4;p � Zðp�2Þ
4;p�2 as a function of

p. We see that these increments decay exponentially in n, and the decay exponent is very close to 1
2

(in log-scale,
the graph is very close to a straight line, with a slope close to �log(2)). Fig. 5 shows that for approximating T 0

k

with an error of order 10�6, we need approximately 25 iterations of the construction above.

7.3. The Helmholtz equation

We have used Algorithm 3, and the approximations of T 0
k

4p
, p = 1,2,3 computed with the discrete analogue

of Algorithm 4, in order to compute numerically H0
ku where k = 1 and u ¼ ðx

2
1
�p2Þ2

p4 , in Y2: the result is plotted in
Fig. 6. Again, we stress the fact that for obtaining the result, we did not solve a boundary value problem in Y2,
but rather, seven boundary problems in Y0. Nevertheless, the function matches smoothly at the interfaces Cr,
r 2A1 [A2.

8. Application: the vibration modes and numerical simulations of the wave equation

The goal here is the computation of the eigenvalues and normalized eigenmodes of the Neumann operatoreL0 introduced in (30). For what follows, we define the operator eL0
k : H 1ðX0Þ7!ðH 1ðX0ÞÞ0 by

heL0
kw; vi ¼

R
X0 rw � rv� k

R
X0 wv, for all v,w in H1(X0). This operator is naturally associated with the Helm-

holtz equation Du + ku = 0 in X0 and Neumann boundary condition on oX0.

8.1. Characterization of the eigenvalues of the Neumann problem

The following lemmas will be useful for computing the eigenvalues in SpN,0.

Lemma 6. For any real number k, if u 2 kerðeL0
kÞ, then ujC0 2 ðkerðL0

kÞÞ
�
.

Proof. We have
R

X0 ru � rv� kuv ¼ 0 for all v 2 H1(X0). Let ~u 2 H 1ðX0Þ be another lifting of ujC0 , then
e ¼ u� ~u 2VðX0Þ and for all v 2 kerðL0

kÞ,
R

X0 re � rv� kev ¼ 0. Subtracting the last two integral identities,
we obtain that for all v 2 kerðL0

kÞ,
R

X0 r~u � rv� k~uv ¼ 0. This exactly says that ujC0 2 ðkerðL0
kÞÞ
�. h

Lemma 7
SpN ;0 ¼ fk 2 R; such that kerðT 0
kÞ 6¼ f0gg; ð63Þ
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and
8u 2 kerðT 0
kÞ; there exists a unique û 2 kerðeL0

kÞ \H0
kðuÞ: ð64Þ
One can obtain a Hibertian basis of H1(X0) by assembling bases of H0
kðkerðT 0

kÞÞ \ kerðeL0
kÞ for k 2 SpN,0.

Proof. We know that k 2 SpN,0 if and only if there exists û 2 H 1ðX0Þ, û 6¼ 0, such that
Z
X0
rû � rv ¼ k

Z
X0

ûv; 8v 2 H 1ðX0Þ: ð65Þ
Calling u 2 H
1
2ðC0Þ the trace of û on C0, Lemma 6 tells us that u 2 ðkerðL0

kÞÞ
�. So T 0

ku is well defined. Holm-
gren’s theorem tells us that u 6¼ 0. Furthermore, remarking that û is a function in the class H0

kðuÞ, we see from
the definition (31) of T 0

k that T 0
ku ¼ 0.

Conversely, if u 2 kerðT 0
kÞ, it can be proved as in the proof of Lemma 3 that there exists a unique function û

in the class H0
kðuÞ which satisfies (65). We have proved (63) and (64). The last statement of the lemma

follows. h

From Lemma 7, one can compute the eigenmodes of eL0 by searching the wavenumbers k such that T 0
k is

noninjective, and by taking the harmonic lifting H0
k of the vectors belonging to the kernel of T 0

k (in the rare
case when k 2 SpD,0 \ SpN,0, if u 2 kerðT 0

kÞ, then H0
kðuÞ is a class of functions given up to the addition of func-

tions in kerðL0
kÞ, so, in order to obtain the harmonic lifting of u in kerðeL0Þ, one needs to solve an auxiliary

linear system in Rd , where d is the dimension of kerðL0
kÞ – note that we have never experienced this case in

our computations). Of course, if the discrete version of Holmgren’s theorem holds, it is possible to carry
out this program with the self-similar finite element discretization introduced above, because Lemmas 6
and 7 have their discrete counterparts.

Remark 9. Conversely, it is possible to compute the eigenmodes of the Dirichlet operator L0 by studying the
Neumann–Dirichlet operators related to the Helmholtz equation.
8.2. Normalization of the eigenmodes of the Neumann problem

A more difficult task is to obtain eigenmodes with unit L2(X0)-norm, in order to construct an orthonormal
basis of L2(X0). For example, as we shall see in Section 7, this is important for projecting a compactly sup-
ported function on eigenspaces. One must recall that it is not possible to compute the eigenmodes in the whole
domain X0; what is possible, by using the method presented above, is to compute their restriction to Yn, where
n is a nonnegative integer. Thus, trying to obtain the L2(X0) norm of an eigenmode seems impossible. Yet, the
following result says that, when k 62 SpD,0, it is possible to normalize the eigenmodes by a perturbation
method.

Proposition 7. Consider k 2 SpN,0 such that k > 0 and k 62 SpD,0, u 2 kerðT 0
kÞ, u 6¼ 0. Let dk be a small variation

of k, such that k + dk 62 SpD,0:
dkkH0
kðuÞk

2
L2ðX0Þ ¼ �hT 0

kþdku; ui þ oðdkÞ: ð66Þ
For dk small enough, dkhT 0
kþdku; ui < 0 and
kH0
kðuÞk

2
L2ðX0Þ ¼ � lim

dk!0

hT 0
kþdku; ui
dk

: ð67Þ
Proof. For simplicity, we note û ¼H0
kðuÞ. Let ê 2VðX0Þ be such that ûþ ê ¼H0

kþdkðuÞ. Since u 2 kerðT 0
kÞ

and û ¼H0
kðuÞ, we know that for all v 2 H1(X0),

R
X0 rû � rv� kûv ¼ 0. In particular, for v ¼ ûþ ê,
Z

X0
rû � rðûþ êÞ � k

Z
X0

ûðûþ êÞ ¼ 0: ð68Þ
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On the other hand, we know that for all v 2VðX0Þ,
R

X0 rðûþ êÞ � rv� ðk þ dkÞ
R

X0ðûþ êÞv ¼ 0. In particular,
for v ¼ ê,
Z

X0
rê � rðûþ êÞ � ðk þ dkÞ

Z
X0

êðûþ êÞ ¼ 0: ð69Þ
Adding (68) and (69) yields
R

X0 jrðûþ êÞj2 � ðk þ dkÞ
R

X0 jûþ êj2 ¼ �dk
R

X0 ûðûþ êÞ. But, since ûþ ê ¼
H0

kþdkðuÞ,
Z
X0
jrðûþ êÞj2 � ðk þ dkÞ

Z
X0
jûþ êj2 ¼ hT 0

kþdkðûþ êÞjC0 ; ðûþ êÞjC0i ¼ hT 0
kþdku; ui:
Therefore, dkkûk2
L2ðX0Þ ¼ �hT 0

kþdku; ui � dk
R

X0 ûê. Finally, since k 62 SpD,0, we deduce from the equationR
X0 rê � rv� k

R
X0 êv ¼ dk

R
X0ðûþ êÞv, 8v 2VðX0Þ, that kêkL2ðX0Þ ¼ OðdkÞ, which completes the proof. h

Proposition 7 permits the scaling of the vibration modes obtained by the characterization in Section 8.1 so
that their L2(X0) norm is close to one (not exactly one, since the scaling factor is obtained by a perturbation
method). This will allow a function to be projected accurately enough on the eigenspaces.

Remark 10. We do not know how to normalize the vibration mode when k 2 SpN,0 \ SpD,0. However, we have
not observed this situation in our computations.
8.3. The projection of a compactly supported function on the space spanned by the first P eigenmodes

Let (ep)p=0,. . .,1 be a Hilbertian basis of L2(X0) made of eigenmodes of eL0 with unit L2(X0) norm. In the
following, we call kp the eigenvalue of eL0 corresponding to ep. We also call KP the subspace of H1(X0):
KP = span(ep)p=0,. . .,P.

Assume that with the method described in Section 8.2, we have obtained eigenmodes ~ep, p = 0, . . . ,P, whose
L2(X0) norm are close to one: ~ep ¼ lpep and jlpj is close to one. More precisely, assume that there exists �,
0 < � < 1, such that, for all p, 0 6 p 6 P, jl2

p � 1j 6 �.
Consider a function u 2 H1(X0) supported for example in Y0. Call pP(u) the projection of u onto KP:
pP ðuÞ ¼
XP

p¼0

ðu; epÞep ¼
XP

p¼0

Z
Y 0

uep

� �
ep:
The function pP(u) cannot be computed directly since ep are not available. What can be computed is
~pP ðuÞ ¼

PP
p¼0ðu;~epÞ~ep ¼

PP
p¼0ð

R
Y 0 u~epÞ~ep. It is clear that
pP ðuÞ � ~pP ðuÞ ¼
XP

p¼0

ð1� l2
pÞðu; epÞep ¼

XP

p¼0

ð1� l2
pÞðpP ðuÞ; epÞep;
therefore kpP ðuÞ � ~pP ðuÞkL2ðX0Þ 6 �kukL2ðX0Þ. The numerical test below will confirm the fact that the method
described in Section 8.2 permits to approximate correctly the projection of a compactly supported function
on KP.

8.4. Numerical computation of the spectrum

We use the domain and mesh displayed in Fig. 3 (X0 is obtained by dilating the domain described in Section
2 by the factor p) and we wish to compute the lower part of the spectrum SpN,0, (k < 40), with the method
proposed in Section 8.1. Before presenting the numerical results, we review known theoretical results on
the density of eigenvalues for irregular domains.

8.4.1. The Weyl–Berry formula

Asymptotics of the density of states is an old problem which started with the well-known Weyl formula: if
X is an open subset of Rd then @DðkÞ, the number of Dirichlet eigenvalues smaller than k behaves like
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@DðkÞ 	 ð2pÞ�d
Bd jXjdkd=2 when k !1;
where Bd is the volume of the unit ball of dimension d, and jXjd is the volume of the domain X.
In the present case, it can be seen that jX0j2 = 16p2 and that B2 ¼ p. The Weyl formula is
@DðkÞ 	 4pk as k !1: ð70Þ

When X has a smooth boundary (and under some extra conditions), a second term in the expansion of @DðkÞ
can be obtained: it is of the form cdk(d�1)/2, with a constant cd depending on the length of the boundary (cf.
[14]). When the boundary is irregular, the second term depends on the Minkowski dimension of the boundary.
The Minkowski dimension is related to the volume of the �-neighborhoods oX� of the boundary oX. More
precisely, the Minkowski measurability can be defined relative to a gauge function g : Rþ ! Rþ increasing
and with some extra properties (cf. [13], part 2). The boundary is said to be g-Minkowski measurable if
0 < lim inf
�!0

��dgð�ÞjoX� \ Xjd ¼ lim sup
�!0

��dgð�ÞjoX� \ Xjd <1:
In this case, the remainder term @DðkÞ � ð2pÞ�d
Bd jXjdkd=2 is proved to be of order (cf. [13], Theorem 2.12)

Oð1=gð 1ffiffi
k
p ÞÞ (and it is expected to be comparable with this value).

In our case, it is easy to verify that j(oX0)� \ X0j2 is equivalent to � logð1þ 1
�
Þ= log 2, which means that the

boundary is g-Minkowski measurable, with gðxÞ ¼ x
logð1þ1

xÞ
. Hence, the remainder term for the counting func-

tion of the Dirichlet eigenvalues @DðkÞ � 4pk is of order Oð
ffiffiffi
k
p

log kÞ.

Remark 11. Note that the Dirichlet problem mentioned here consists of imposing a Dirichlet condition on
all oX0, so it is not problem (23). The same results hold for the Neumann boundary condition provided that
an extra regularity condition (the ‘‘C 0 condition’’) is satisfied, see [13]. The ‘‘C 0 condition’’ is not satisfied by
the domain X0 under consideration, so the previous estimates are not known to be true for the Neumann
problem.

Note also that Berger (see [5]) has studied the eigenvalue distribution and the asymptotics for the counting
function for Dirichlet and Neumann problems in a domain with a snowflake boundary, which does not fulfill
the conditions of [13]. The geometric construction in [5] differs from the present one, but it seems possible to
adapt Berger’s arguments; this remains to be done.

We are going to verify numerically the previously mentioned estimates for the Neumann problem.

8.4.2. The numerical computation of SpN,0

We have computed numerically the first part of the spectrum SpN,0 (i.e. k < 40) by the method proposed in
Section 8.1. More precisely, for a chosen step Dk, we use the following method:

Algorithm 5. k = kmin; compute T 0
k (its discrete version) by the construction given in Section 5.3; compute the

eigenvalues and the eigenvectors of T 0
k ; while (k < kmax)

� As long as the signature of T 0
k does not change sign

– k = k + Dk;
– compute T 0

k (its discrete version); compute the eigenvalues and the eigenvectors of T 0
k ;

� the signature of T 0
k has changed between k and k � Dk, we run a dichotomy method in order to compute a

singular value ksing between k and k � Dk. This may be either an eigenvalue (in SpN,0) of the Neumann
problem, if kerðT 0

ksing
Þ 6¼ f0g, or a value in SpD,0;

� set k = aksing + (1 � a)k; (a is a fixed parameter, 0 < a < 1); compute T 0
k ; compute the eigenvalues and the

eigenvectors of T 0
k .

We took Dk = 10�3 for k 6 10 and Dk = 10�2 for 10 < k 6 40. Of course, a drawback of this method is that
it may miss an eigenvalue if there are more than one singular values between two successive test values of k.

In our C++ code, we used the functions contained in the library GSL (GNU Scientific Library) for com-
puting the eigenvalues and eigenvectors of T 0

k .
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Recall that if u 6¼ 0 belongs to the nullspace of T 0
k , then k (resp. H0

kðuÞ) is an eigenvalue (resp. eigenmode) of
the Neumann problem. Thus, for a fixed integer n P 0, once k and u belonging to the nullspace of T 0

k is found,
the restriction of the related eigenmode to Yn can be found by using Algorithm 3.

8.4.3. The results

We numerically compute the counting function @ of the Neumann eigenvalues. The ‘‘C 0 condition’’ is not
satisfied, so the previous estimates are not known to be true for @.

In Fig. 7, we have plotted @hðkÞ, the number of computed eigenvalues smaller than k vs. k, for k < 40, and
the graph of k ´ 4pk. We see that the Weyl estimate (70) is very well satisfied by @hðkÞ. This indicates that the
Weyl estimate is true for @.

We go further and plot the remainder term @hðkÞ � 4pk. We have tried to fit this function by a function of
the type f ðkÞ ¼ ða logðkÞ þ bÞ

ffiffiffi
k
p
þ c. The parameters a, b, c have been computing by using a least square algo-

rithm in the interval k = [0,10]. In Fig. 8, we plot the function @hðkÞ � 4pk and f(k), for k 2 (0, 30). Although
the least square algorithm has been used to fit the function in the region (0,10), we see that f(k) approaches
@hðkÞ � 4pk well, for k 2 (10,30).

In Fig. 9, we have plotted the restrictions of the second and sixth eigenmodes (not normalized yet)
to Y2. These views respectively correspond to the contour lines at the top-left and middle-left of
Fig. 10.
Fig. 7. The computed spectrum SpN,0: the number @hðkÞ of eigenvalues smaller than k vs. k, for k < 40, and the graph of k ´ 4pk.

Fig. 8. The remainder @hðkÞ � 4pk and f(k).



Fig. 9. The second (left side) and sixth (right side) eigenmodes, restricted to Y2.
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It is interesting to compare the spectrum found by the present method with the spectrum of the Neumann
problem in Y2, computed with a standard finite element method (the software FreeFem++ and the library
Arpack for the generalized eigenvalue problem have been used). Table 1 contains the smallest eigenvalues
of the two problems. The lower parts of the spectra clearly differ from each other; in particular, the second
eigenvalue of the Neumann problem in Y2 is smaller than the second eigenvalue of the Neumann problem
in X0. It is also possible to compare some of the eigenmodes: in Fig. 10, we see that the eigenmodes of the
first problem, respectively associated with the eigenvalues 2.06 · 10�2, 1.97 · 10�1 and 4.92 · 10�1, somehow
resemble the eigenmodes of the Neumann problem in Y2 respectively associated with the eigenvalues
2.7 · 10�2, 2.7 · 10�1 and 5.5 · 10�1. Note that the increments in value from one contour to the next are
not the same on the left and right sides of Fig. 10. For example, even if the top right/left figures seem very
close to each other, the functions actually differ (the isovalues are closer to each other on the left, which is
consistent with the fact that 2.06 · 10�2 < 2.7 · 10�2). It would be interesting (but too long for the present arti-
cle) to make further numerical comparisons, in particular with the spectrum of the Neumann problem in Yn,
as n varies.
8.5. Modal decomposition of a compactly supported function and application to the numerical simulation of the

wave equation in X0

8.5.1. Modal decomposition of a compactly supported function
To test the normalization of the eigenmodes described in Section 8.2, we choose a compactly supported

function u and we compare u with ~pP u for 1 6 P 6 300. We choose
u ¼ x2
1 � p2

p2

� �4 x2ð3p� x2Þ
9p2

4

 !3

1�p<x1<p10<x2<3pe�x2
1
� x2�3p

2ð Þ2 : ð71Þ
In the left part of Fig. 11, we plot the error ku� ~pP ukL2ðY 0Þ as a function of P. We see that the error decays as P

tends to infinity. This shows that the family ð~epÞ introduced in Section 8.2 is close to orthonormal and that the
normalization of the eigenmodes by the perturbation method is accurate. In the right part of Fig. 11, we plot
the reconstructed function ~pP ujY 0 for P = 300. There is no visible difference between u and ~p300ðuÞ. More quan-
titatively, we obtain for P = 300, that ku� ~pP ukL1ðY 0Þ 6 10�2.

To further test the normalization procedure, we compute ap ¼
R

Y 0ðu� ~p300uÞ~ep for 0 6 p 6 300; if ~ep

matched ep for all p, 0 6 p 6 300, then the numbers ap would be exactly 0. In Fig. 12, we plot ap as a function

of p. We see that these numbers never exceed 3 · 10�3, which confirms the fact that the family ~ep is very close
to being orthonormal.



Table 1
The smallest eigenvalues of the Neumann problem in X0 (computed by the method in Section 8.4.2) and in Y2 (computed with a standard
finite element method)

X0 0 2.06 · 10�2 7.84 · 10�2 8.24 · 10�2 1.63 · 10�1 1.97 · 10�1 2.87 · 10�1

Y2 0 1.3 · 10�2 2.7 · 10�2 8.6 · 10�2 9.6 · 10�2 1.1 · 10�1 2.3 · 10�1

Fig. 10. Left: the restrictions to Y2 of the eigenmodes of the Neumann problem in X0, corresponding with the eigenvalues 2.06 · 10�2,
1.97 · 10�1 and 4.92 · 10�1. Right: the eigenmodes of the Neumann problem in Y2, corresponding with the eigenvalues 2.7 · 10�2,
2.7 · 10�1 and 5.5 · 10�1. The contours on the left and right figures do not correspond to the same values.
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8.5.2. Wave propagation in X0

Finally, it is possible to use the above modal decomposition of a compactly supported function for solving a
Cauchy problem for the wave equation in X0 with compactly supported initial data: we wish to compute as
accurately as possible the restriction to Yn (here, we shall restrict ourselves to n = 0) of the solution to the fol-
lowing problem:



Fig. 11. Left: the error ku� ~pP ukL2ðY 0Þ vs. P. Right: the function ~p300ujY 0 (viewed from the east).

Fig. 121ap¼RY0ðu�~

p300uÞ~

epvs.p.Y. Achdou
o2w
ot2
� Dw ¼ 0 in ð0; T Þ � X0;

ow
on
¼ 0 on ð0; T Þ � ðC0 [ R0Þ;

wjt¼0 ¼ u0 in X0;

ow
ot
jt¼0 ¼ u1 in X0;

ð72Þ
where u0 and u1 are two functions supported for example in Y0. It is possible to approximate the modal
decompositions of u0 and u1, namely to compute ~pP u0 ¼

PP
p¼0bp~ep and ~pP u1 ¼

PP
p¼0cp~ep; then, one may solve

a Cauchy problem close to (72)
o2 ~w
ot2
� D~w ¼ 0 in ð0; T Þ � X0;

o~w
on
¼ 0 on ð0; T Þ � ðC0 [ R0Þ;

~wjt¼0 ¼ ~pP u0 in X0;

o~w
ot
jt¼0 ¼ ~pP u1 in X0;

ð73Þ
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Fig. 13. ~wðt; aÞ vs. t, where ~w is the solution to (73) with u0 given by (71), and u1 = 0.
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because
~wðt; xÞ ¼ ðb0 þ c0tÞ~e0 þ
XP

p¼1

bp cosð
ffiffiffiffiffi
kp

p
tÞ þ

cpffiffiffiffiffi
kp

p sinð
ffiffiffiffiffi
kp

p
tÞ

 !
~epðxÞ:
We stress the fact that ~e0 is a constant. In Fig. 13, we have plotted the value of ~wðt; aÞ as a function of time, for
a ¼ 3p

2
; 3p

� �
, for u0 = u given by (71), and u1 = 0.
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